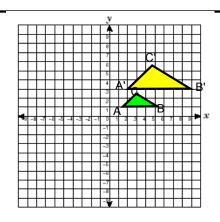

## **Independent Practice**

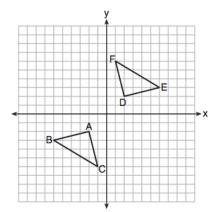
In each example, identify the transformation and state if it is a rigid motion or not.




Reflection Transformation:\_

Yes Is this a rigid motion?\_\_\_

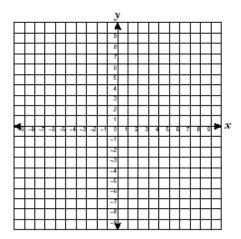



Translation Transformation:\_

Is this a rigid motion?\_



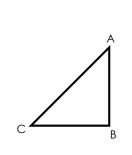
Dilation Transformation:\_

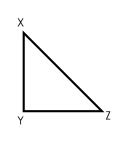

Is this a rigid motion?



Transformation:\_

Is this a rigid motion?\_


Yes

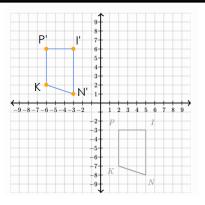



Draw an example of a rigid motion on the coordinate plane to the left.

Explain why your example is a rigid motion

## **Proving Congruence with Rigid Transformations**

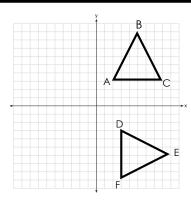





State the transformation that maps▲ ABC onto▲XYZ

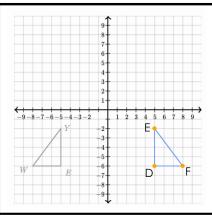
## Reflection

2. Use the properties of rigid motions to explain why  $\triangle$ ABC  $\cong$   $\triangle$ XYZ


A <u>reflection</u> is a rigid motion and rigid motions preserves side lengths and angle measures



1. State the transformation that maps PINK onto P'I'N'K'


2. Explain why PINK is congruent to P'I'N'K' using the properties of rigid motions.

A <u>translation</u> is a rigid motion and rigid motions preserves side lengths and angle measures



 $\triangle$  ABC and  $\triangle$  DEF are graphed on the coordinate plane. Use the properties of rigid motions to explain why  $\triangle$ ABC  $\cong$   $\triangle$  DEF

A <u>rotation</u> is a rigid motion and rigid motions preserves side lengths and angle measures



 $\triangle$  YWE and  $\triangle$ DEF are graphed on the coordinate plane. Use the properties of rigid motions to explain why  $\triangle$ YWE  $\cong$   $\triangle$  DEF

A <u>reflection</u> is a rigid motion and rigid motions preserves side lengths and angle measures