1.3 Translations

One day you'll look back at this lesson and tell your grandkids about it.

What is a Translation?

A translation is when you \qquad a point, line, or shape without rotating or flipping it. The shape still looks exactly the same, just in a different place.

Skill 1: Performing Translations

$\Delta A B C$ is translated 5 units down and 3 to the right. What is the coordinate of $\boldsymbol{\Delta} A^{\prime} B^{\prime} C^{\prime}$?

Is $\boldsymbol{\Delta} A B C \cong \boldsymbol{\Delta} A^{\prime} B^{\prime} C^{\prime}$? Explain using the properties of rigid motions.

Given $\square A B C D$ with $A(2,1), B(2,4), C(7,4), D(7,1)$. A translation of $(x, y) \longrightarrow(x+3, y-4)$ is applied to $\square A B C D$. What are the coordinates of $\square A^{\prime} B^{\prime} C^{\prime} D^{\prime}$?

Is $\square A B C D \cong \square A^{\prime} B^{\prime} C^{\prime} D^{\prime}$? Explain using the properties of rigid motions.

Skill 2: Describing Translations

Describe a transformation that maps $\boldsymbol{\Delta}$ CAT onto $\boldsymbol{\Delta} \mathrm{C}^{\prime} \mathrm{A}^{\prime} \mathrm{T}^{\prime}$.

Prove $\boldsymbol{\Delta} C A T \cong \mathbf{\Delta} C^{\prime} A^{\prime} T^{\prime}$ using the properties of rigid motions.

Describing Translations without the Coordinate Plane

If you are performing a translation of a shape not on a grid you can no longer say "move one unit up and three units to the right" because without a grid there are no units. You must define the line of translation yourself.

Describe a translation that maps $\triangle A B C$ onto $\triangle D E F$

Describe a translation that maps circle O onto circle B

Independent Practice

$\mathbf{\Delta}$ LUV is translated 7 units up and 8 to the right. What is the coordinate of $\boldsymbol{\Delta} L^{\prime} U^{\prime} V ' ?$

Is $\boldsymbol{\Delta} L U V \cong \boldsymbol{\Delta}$ L'U'V'? Explain using the properties of rigid motions.

Given $\square A B C D$ with $A(3,-4), B(4,2)$, and $C(7,-4), D(8,2)$. A translation of $(x, y) \longrightarrow(x-5, y+2)$ is applied to $\boldsymbol{\square} A B C D$. What are the coordinates of $\boldsymbol{\square} A^{\prime} B^{\prime} C^{\prime} D^{\prime}$?

\boldsymbol{x}
Is $\boldsymbol{\square} A B C D \cong \boldsymbol{\square} A^{\prime} B^{\prime} C^{\prime} D^{\prime}$? Explain using the properties of rigid motions.

Describe a transformation that maps rectangle MEOW onto rectangle M'E'O'W'

Using the properties of rigid motions, explain how you know rectangle MEOW is congruent to rectangle M'E'O'W'

Describe a translation that maps $\boldsymbol{\Delta}$ SMH onto $\boldsymbol{\Delta}$ S'M'H' $^{\prime}$

\qquad
will map
onto \qquad .

Describe a translation that maps pentagon ABCDE onto MNOPL

