Independent Practice

Δ LUV is translated 7 units up and 8 to the right. What is the coordinate of $\boldsymbol{\Delta} L^{\prime} U^{\prime} V^{\prime}$?

$$
\begin{aligned}
& \mathrm{L}(-6,-3) \longrightarrow \mathrm{L}^{\prime}\left(\frac{2}{-2}, \frac{4}{2}\right) \\
& \mathrm{U}(-5,-7) \longrightarrow \mathrm{U}^{\prime}\left(3, \frac{0}{2}\right) \\
& \mathrm{V}(-2,-7) \longrightarrow \mathrm{V}^{\prime}(-6)
\end{aligned}
$$

Is $\boldsymbol{\Delta} L U V \cong \boldsymbol{\Delta}$ L'U'V'? Explain using the properties of rigid motions.

Given $\boldsymbol{\square A B C D}$ with $\mathrm{A}(3,-4), B(4,2)$, and $C(7,-4), D(8,2)$. A translation of $(x, y) \longrightarrow(x-5, y+2)$ is applied to $\boldsymbol{\square} A B C D$. What are the coordinates of $\boldsymbol{\square} A^{\prime} B^{\prime} C^{\prime} D^{\prime}$?

$A(3,-4)$	$\longrightarrow A^{\prime}(-2,-2)$
$B(4,2)$	$\longrightarrow B^{\prime}(-1,4)$
$C(7,-4)$	$\longrightarrow C^{\prime}(2,-2)$
$D(8,2)$	$\longrightarrow D^{\prime}(3,4)$

Is $\boldsymbol{\square} A B C D \cong \boldsymbol{\square} A^{\prime} B^{\prime} C^{\prime} D^{\prime}$? Explain
using the properties of rigid motions.
Yes, because a translation is a rigid
transformation and rigid transformations
preserve side lengths and angle measures

Describe a transformation that maps rectangle MEOW onto rectangle M'E'O'W'

A translation 7 units down and 9 units to the right maps rectangle MEOW onto rectangle M'E'O'W'

Using the properties of rigid motions, explain how you know rectangle MEOW is congruent to rectangle M'E'O'W'

> A translation 7 units down and 9 units to the right maps rectangle MEOW onto rectangle M'E'O'W'. A translation is a rigid transformation and rigid transformations preserve the lengths of sides and angle measures.

Describe a translation that maps $\boldsymbol{\Delta}$ SMH onto $\boldsymbol{\Delta}$ S'M'H' $^{\prime}$

Describe a translation that maps pentagon ABCDE onto MNOPL

