2.6 Corresponding Parts of Congruent Triangles

More Essential Theorems in Geometry

CPCTC

Corresponding parts of Congruent Triangles are Congruent

B

How can we prove $\overline{AB} = \overline{DE}$?

Step 1: Prove ▲ABC = ▲ DEF

Step 2: Corresponding Parts of Congruent Triangles must be congruent

Given: $\overline{BU} \cong \overline{UG}$

 \overline{UM} bisects \overline{BG}

Prove: $\angle BUM \cong \angle MUG$

Given: $\overline{AC} \perp \overline{BD}$

 $\overline{AB} \cong \overline{BC}$

Prove: $\overline{AD} \cong \overline{CD}$

Advanced Proofs

Independent Practice

Given: $\overline{AB} \cong \overline{DE}$, $\overline{BC} \cong \overline{EC}$, C is the midpoint of \overline{AD}

Prove: $\angle A \cong \angle D$

Given: \overline{DB} bisects $\angle ABC$

 $\overline{AB} \cong \overline{CB}$

Prove: $\angle A \cong \angle C$

Given: C bisects \overline{AE}

 $\angle B$ and $\angle D$ are right angles

 $\angle A \cong \angle E$

Prove: $\overline{BC} \cong \overline{DC}$

Given: $\overline{AC} \cong \overline{EC}$

C bisec ts BD

Prove: C is the midpoint of AE

Given: \overline{AD} bisects $\angle BAC$

 $\overline{AD} \perp \overline{BC}$

Prove: $\overline{\mathsf{AD}}$ is the median

of triangle ABC

