2.6 Corresponding Parts of Congruent Triangles

More Essential Theorems in Geometry

CPCTC

Corresponding parts of Congruent Triangles are Congruent

How can we prove $\overline{\mathrm{AB}}=\overline{\mathrm{DE}}$?
Step 1: Prove $\boldsymbol{\Delta} A B C=\boldsymbol{\Delta} D E F$

Step 2: Corresponding Parts of Congruent Triangles must be congruent

Given: $\overline{B U} \cong \overline{U G}$
$\overline{U M}$ bisects $\overline{B G}$
Prove: $\Varangle B U M \cong \Varangle M U G$

Given: $\quad \overline{A C} \perp \overline{B D}$
$\overline{\mathrm{AB}} \cong \overline{\mathrm{BC}}$
Prove: $\quad \overline{\mathrm{AD}} \cong \overline{\mathrm{CD}}$

Advanced Proofs

Given: E is the midpoint of $\overline{\mathrm{LV}}$ and $\overline{\mathrm{OE}}$ is the altitude of $\boldsymbol{\Delta}$ LOV

Prove: $\boldsymbol{\Delta}$ LOV is an isosceles triangle.

Given: $\overline{\mathrm{BD}}$ is the
perpendicular bisector
of $\overline{A C}$
Prove: $\overline{\mathrm{BD}}$ bisects $\angle \mathrm{B}$

Given: $\angle \mathrm{F}=\angle \mathrm{R}$ and $\overline{\mathrm{AT}}$
bisects \angle RTF
Prove: $\overline{\mathrm{AT}}$ is the median of triangle RTF.

Given: $\overline{A B} \cong \overline{D E}, \overline{B C} \cong \overline{E C}$,
C is the midpoint of $\overline{A D}$
Prove: $\angle A \cong \angle D$

$\begin{array}{ll}\text { Given: } & \overline{D B} \text { bisects } \angle A B C \\ & \overline{A B} \cong \overline{C B}\end{array}$

Prove: $\angle A \cong \angle C$

Given: C bisects $\overline{A E}$
$\angle \mathrm{B}$ and $\angle \mathrm{D}$ are right angles
$\angle A \cong \angle E$
Prove: $\quad \overline{\mathrm{BC}} \cong \overline{\mathrm{DC}}$

Given: $\overline{Y W}$ bisects $\overline{X Z}$

$$
\overline{X Y}=\overline{Y Z}
$$

Prove: YW bisects $\angle \mathrm{Y}$

Given: $\overline{\mathrm{AC}} \cong \overline{\mathrm{EC}}$
C bisects $\overline{\mathrm{BD}}$

Prove: C is the midpoint of $A E$

Given: $\overline{A D}$ bisects $\measuredangle B A C$
$\overline{A D} \perp \overline{B C}$
Prove: $\overline{\mathrm{AD}}$ is the median of triangle $A B C$

