3.4 Similarity in Right Triangles

Objective: Students will be able to identify similar triangles inscribed in a right triangle

Write the similarity statement for the three triangles in the diagram. Label the triangles below.

In Δ JML, we know LM = 3 and MK = 9 .What is the length of JM?

Step 1: Draw and label three similar triangles

Step 2: Set up ratio and solve

In the figure below, CD = 12 and CB = 5. What is the length of \overline{AB} ?

Step 2: Set up ratio and solve

Independent Practice

Step 1: Draw and label three similar triangles

In the diagram below of right triangle *ACB*, altitude \overline{CD} intersects \overline{AB} at *D*. If AD = 3 and DB = 4, find the length of \overline{CD} in simplest radical form.

Step 1: Draw and label three similar triangles

In the diagram below of right triangle ABC, \overline{CD} is the altitude to hypotenuse \overline{AB} , AD = 3, and DB = 4.

What is the length of \overline{CB} ?

Step 1: Draw and label three similar triangles

Triangle \underline{ABC} shown below is a right triangle with altitude \underline{AD} drawn to the hypotenuse \underline{BC} .

If BD = 2 and DC = 10, what is the length of \overline{AB} ? 1) $2\sqrt{2}$

- 2√5
- 3) 2√6
- 4) 2√30

Hint: Convert all radicals to decimals!

SHOW ALL WORK BY DRAWING ALL TRIANGLES

In $\triangle RST$ shown below, altitude \overline{SU} is drawn to \overline{RT} at U.

If SU = h, UT = 12, and RT = 42, which value of h will make $\triangle RST$ a right triangle with $\angle RST$ as a right angle?

- 1) 6√3
- 2) $6\sqrt{10}$
- 3) 6√14
- 4) 6√35

Stuck? Check out the hint under the video for help.