3.4 Advanced Proofs with Parallel Lines

Objective: Students will be able to find the measures of angles in parallel lines cut by a transversal

In the picture below, DE is the transversal for lines AC and FH. Prove AC II FH

Angle	Measure	Reason

Line \boldsymbol{m} is the transversal for lines \nsim and ℓ. Fill in the missing angles and then prove \nsim is parallel to ℓ

Angle	Measure	Reason

Conclusion

Lines $\bar{B} H$ and and $\overline{B E}$ are transversals for lines $\overline{A C}$ and $E \bar{G}$ and $E \bar{B}=B \bar{B}$ in triangle $E B F$. Prove $\overline{A C}$ is parallel to $E \bar{G}$.

Independent Practice

Lines m and k is the transversal for parallel lines k and ℓ. Fill in the missing angles $1-10$

In the picture below, $\overline{\mathrm{AB}} \cong \overline{\mathrm{AC}}, \overline{\mathrm{KH}}$ is the transversal for $\overline{\mathrm{FD}}$ and $\overline{\mathrm{BC}}$. Prove $\overline{\mathrm{FD}}$ is parallel to $\overline{\mathrm{BC}}$

