5.1 Properties of Parallelograms

Objective: Students will use the properties of parallelograms to solve problems

Four more properties we know are true for EVERY parallelogram
A quadrilateral is a parallelogram if opposite sides are congruent

Given: In quadrilateral $\mathrm{ABCD}, \angle \mathrm{B} \cong \angle \mathrm{D}$ and $\angle \mathrm{A} \cong \angle \mathrm{C}$. Prove that $A B C D$ is a parallelogram.

Proof
Quadrilateral ABCD is a parallelogram because
\qquad

Given: In quadrilateral MNOP, diagonals $\overline{M O}$ and $\overline{N P}$
intersect at point T and $\overline{M T} \cong O T$ and $N T \cong T P$.
Prove that MNOP is a parallelogram.

Proof
Quadrilateral MNOP is a parallelogram because

Given: In quadrilateral $W X Y Z, \bar{W} X \| \overline{Z Y}$ and $\overline{W Z} \| \overline{X Y}$.
Prove that $W X Y Z$ is a parallelogram.

Proof

Given: In quadrilateral $A B C D, \overline{\mathrm{AB}} \cong \overline{\mathrm{DC}}$.
What additional information is needed to prove that $A B C D$ is a parallelogram.
Additional Information

Quadrilateral $A B C D$ is a parallelogram because
In parallelogram $W X Y Z, \angle Z=68^{\circ}$. Find the $m \angle W$ and justify your answer.

The $\mathrm{m} \angle \mathrm{W}=$ \qquad because \qquad

In parallelogram $A B C D, \angle A=75^{\circ}$. Find the $m \angle C$ and justify your answer.

The $m \angle C=$ \qquad because \qquad

In parallelogram MNOP, $\angle \mathrm{NMO}=62^{\circ}$ and $\angle \mathrm{P}=48^{\circ}$. Find the $\mathrm{m} \angle 1, \mathrm{~m} \angle 2$ and $\mathrm{m} \angle 3$. Justify your answer.

Angle	Measure	Reason
$\angle 1$		
$\angle 2$		
$\angle 3$		

In parallelogram STOP, $\angle \mathrm{TSO}=25^{\circ}, \angle \mathrm{PTO}=54^{\circ}$ and $\angle \mathrm{STP}=46^{\circ}$. Find the $m \angle 1, m \angle 2, m \angle 3$ and $m \angle 4$. Justify your answer.

Angle	Measure	Reason
$\angle 1$		
$\angle 2$		
$\angle 3$		
$\angle 4$		

Independent Practice

Fill in the missing information about the parallelograms below

If a quadrilateral is a parallelogram, then its opposite sides are congruent.
\qquad $\cong \overline{R S}$ and $\overline{S P} \cong$ \qquad

If a quadrilateral is a parallelogram, then its consecutive angles are supplementary.

$$
\begin{aligned}
& m \angle P+m \angle Q= \\
& m \angle Q+m \angle R=Z^{\circ}, \\
& m \angle R+m \angle S=, \\
& m \angle S+m \angle P={ }^{\circ},
\end{aligned}
$$ ${ }^{\circ}$,

If a quadrilateral is a parallelogram, then its opposite angles are congruent.

$$
\angle P \cong \angle _ \text {and } \angle \ldots \cong \angle \mathrm{S}
$$

If a quadrilateral is a parallelogram, then its diagonals bisect each other.

$$
\overline{Q M} \cong \ldots \quad \text { and } \ldots \quad \cong \overline{R M}
$$

Parallelogram MEOW is pictured below. Fill in the missing information and state the property that you used to answer the question

MW II \qquad because \qquad
\qquad
\qquad
\qquad
$W S \cong$ because
\qquad
\qquad

Given: In quadrilateral $A B C D, \angle B+\angle C=180$ and $\angle A$ is supplementary to $\angle B$. Prove that $A B C D$ is a parallelogram.

Given: In quadrilateral MNOP, $\overline{M P} \| N O$ and $\overline{M N} \| P O$.
Prove that MNOP is a parallelogram.

Proof

Given: In quadrilateral $W X Y Z, \bar{W} X \cong \overline{Z Y}$ and $\overline{W Z} \cong \overline{X Y}$
Prove that $W X Y Z$ is a parallelogram.

In parallelogram LOVE, $\angle L=141^{\circ}$. Find the $\mathrm{m} \angle \mathrm{V}$ and justify your answer.

In parallelogram CATS, $\angle A=27^{\circ}$. Find the $m \angle T$ and justify your answer.

The $m \angle V=$ \qquad because \qquad The $m \angle T=$ \qquad because \qquad $\underline{\square}$ \rightarrow

In parallelogram FEHG, $\angle \mathrm{GEH}=36^{\circ}$ and $\angle \mathrm{EHG}=102^{\circ}$. Find the measures of the angles in the chart below. Justify your answer.

Angle	Measure	Reason
$\angle E F G$		
$\angle F G E$		
$\angle F E G$		
$\angle E G H$		

In parallelogram MNOP, $\angle M O P=65^{\circ}, \angle N P O=40^{\circ}$ and $\angle M P N=32^{\circ}$. Find the measures of the angles in the chart below. Justify your answer.

Angle	Measure	Reason
$\angle 1$		
$\angle 2$		
$\angle 3$		
$\angle 7$		
$\angle 8$		
$\angle 9$		
$\angle 10$		
$\angle 11$		
$\angle 12$		

