5.5 Sectors and Arc Length

Objective: Students will be able to find the area and perimeters of circles

Area of a Sector

A sector is a portion of the total area of a circle

$$
\begin{aligned}
& \text { Formula: Area of a Sector } \\
& \text { Area }=\frac{\theta}{360} \times \pi r^{2} \\
& \text { Area }=\frac{(\quad)}{360} \times \pi()^{2}
\end{aligned}
$$

In the diagram below of circle A, the radius has a length of 6 and the measure of $\angle A=75$. Find the area of the shaded region.

$$
\begin{aligned}
& \text { Area }=\frac{\theta}{360} \times \pi r^{2} \\
& \text { Area }=\frac{(\quad)}{360} \times \pi(\quad)^{2}
\end{aligned}
$$

In the diagram below of circle E, the area of the shaded sector is 8π and the length of the radius is 12 . Determine the $m \angle E$.

$$
\begin{aligned}
& \text { Area }=\frac{\theta}{360} \times \pi r^{2} \\
& (\quad)=\frac{()}{360} \times \pi(\quad)^{2}
\end{aligned}
$$

Arc length

An arc length is a portion of the total circumference

Formula: Arc Length
$l=\frac{\theta}{360} 2 \pi r$
$l=\frac{(\mathrm{l}}{360} 2 \pi(\quad)$

Circle A has a radius of 18 and $m \angle P A Q=150^{\circ}$. Find the length of $P \bar{Q}$

$$
\begin{aligned}
& l=\frac{\theta}{360} 2 \pi r \\
& l=\frac{()}{360} 2 \pi(,)
\end{aligned}
$$

In the diagram below of circle A, the length of arc $P Q$ is 4π and length of $\mathrm{m} \angle \mathrm{PAQ}=24$. Determine the length of the radius of the circle.

$$
\begin{aligned}
l & =\frac{\theta}{360} 2 \pi r \\
(\quad) & =\frac{()}{360} 2 \pi(,)
\end{aligned}
$$

Independent Practice

The diameter of of circle B is $\overline{A C}$, which has a length of 20 cm . The $m \angle A B D=75^{\circ}$ and the $m \angle C B E=35^{\circ}$. Find the length of $\operatorname{arc} \overparen{D E}$.

