6.4 Cofunctions

Students will learn about cofunctions in trigonometry

Trigonometric Cofunctions

The sine of an angle is equal to the cosine of its complement.

$\sin \angle A=$ \qquad $\cos \angle B=$ \qquad
Key Fact

Example Problems

If $\sin (49)=\cos (x)$, find the value of x
that would make this statement true.

If A and B are complimentary angles, and $\sin A=\frac{3}{5}$, what is the $\cos B$?

Trigonometry Cofunctions Part II
Another way of saying the same thing

If $\cos 72^{\circ}=\sin x$, find the number of degrees in the measure of acute angle x.

In $\triangle A B C$, where $\angle C$ is a right angle, $\cos A=\frac{\sqrt{21}}{5}$. What is $\sin B$?

Which value of x satisfies the equation
$\sin (3 x+5)^{\circ}=\cos (4 x+1)^{\circ}$?

In right triangle $A B C$ with the right angle at C, $\sin A=2 x+0.1$ and $\cos B=4 x-0.7$. Determine and state the value of x. Explain your answer.

Independent Practice

In $\mathbf{\Delta}$ CAT, find the $\sin A$ and cosT.

$$
\sin A=
$$

$\cos T=$ \qquad
Is $\sin A=\cos T ?$

a

1. Express $\sin \mathrm{A}=$ \qquad 2. Express $\cos \mathrm{B}=$ \qquad
2. Express $\sin \mathrm{B}=$ \qquad
3. Express $\cos \mathrm{A}=$ \qquad
4. $m \measuredangle C=$ \qquad 6. $m \measuredangle A+m \measuredangle B=$ \qquad

For problems $a-f$, find the missing value of cosine.
a. $\sin 20^{\circ}=\cos$ \qquad ${ }^{\circ}$
b. $\sin 33^{\circ}=\cos$
c. $\sin 45^{\circ}=\cos$ \qquad -

For questions \#11-20, find the value of x. All problems deal with degrees.
11. $\sin (x)=\cos 31^{\circ}$
12. $\sin 75^{\circ}=\cos (x)$
13. $\sin (x-4)=\cos 50^{\circ}$

Which expression is always equivalent to $\sin x$
when $0^{\circ}<x<90^{\circ}$?

1) $\cos \left(90^{\circ}-x\right)$
2) $\cos \left(45^{\circ}-x\right)$
3) $\cos (2 x)$
4) $\cos x$

In $\triangle A B C$, the complement of $\angle B$ is $\angle A$. Which statement is always true?

1) $\tan \angle A=\tan \angle B$
2) $\sin \angle A=\sin \angle B$
3) $\cos \angle A=\tan \angle B$
4) $\sin \angle A=\cos \angle B$

If x is a positive acute angle and
If $\cos (2 x-25)^{\circ}=\sin 55^{\circ}$, find the value of x.
$\sin x=\cos \left(x+20^{\circ}\right)$, find the value of x.

In $\triangle A B C$, where $\angle C$ is a right angle,
In right $\triangle A B C, m \angle C=90^{\circ}, \cos A=\frac{1}{5}$. What is $\sin B$?
$\cos A=\frac{2}{5}$. What is $\sin B$?

1) $\frac{\sqrt{21}}{5}$
2) $\frac{\sqrt{21}}{2}$
3) $\frac{2}{5}$
4) $\frac{5}{\sqrt{21}}$

In right $\triangle A B C, m \angle C=90^{\circ}, \sin A=3 x-0.6$ and $\cos B=4 x-0.9$. Find x.

