Study Guide for Level 7 Test

All the answers are in your heart. Wait, hats wrong - I mean notes. The answers are in your notes.

The equation of a line is $3 y+2 x=12$. What is the slope of the line perpendicular to the given line?

1) $\frac{2}{3}$
(2)) $\frac{3}{2}$
2) $-\frac{2}{3}$
3) $-\frac{3}{2}$

The lines whose equations are $2 x+3 y=4$ and $y=m x+6$ will be perpendicular when m is

1) $-\frac{3}{2}$
2) $-\frac{2}{3}$
(3)) $\frac{3}{2}$
3) $\frac{2}{3}$

Which equation represents a line that is
perpendicular to the line represented by $2 x-y=7$?
(1)) $y=-\frac{1}{2} x+6$
2) $y=\frac{1}{2} x+6$
3) $y=-2 x+6$
4) $y=2 x+6$

Determine if the two lines $2 x-9 y=-18$ and $y=\frac{2}{9} x-3$ ar parallel, perpendicular, or neither.

Which equation represents a line that is parallel to
the line whose equation is $2 x+3 y=12$?

1) $6 y-4 x=2$
2) $6 y+4 x=2$
3) $4 x-6 y=2$
4) $6 x+4 y=-2$

The equation of a line is $y \frac{z}{3} x+5$. What is an equation of the line that is perpendicular to the given line and that passes through the point $(-2,3$?

$$
y=m x+b
$$

$$
m=\frac{-3}{2}
$$

$$
3=\left(-\frac{3}{2}\right)(-2)+b
$$

$x=$
$y=3$

$$
3=3+b
$$

Give the slope-intercept form of the equation of the line that is parallel to
$8 x+5 y=-7$ and contains $(5,3)$.
$y=\frac{-8}{5} x-\frac{7}{5}$

Write the standard form of the equation of the line passing through the point $(1,5)$ and perpendicular to the line $4 x-7 y=-28$.
([AI) $7 x+4 y=27$
[B] $-7 x-4 y=27$
[C] $4 x+7 y=39$
[D] $4 x-7 y=-39$

The line $3 x-4 y=8$ is dilated by a scale factor of 1.5 centered at the origin. Write the equation of the line after the dilation

$$
\begin{aligned}
3 x-4 y & =8 \\
-3 x \quad & -3 x \\
\hline \frac{-4 y}{-4} & =\frac{-3 x}{-4}+\frac{8}{-4} \\
y & =\frac{3}{4} \times-28 \times 1.5 \\
y & =\frac{3}{4} x-3
\end{aligned}
$$

The line $x-2 y=4$ is dilated by a scale factor of 2 centered at point $(2,1)$. Write the equation of the line after the dilation

$$
\begin{aligned}
& x-2 y=4 \\
&-x \quad-x \\
& \hline \frac{-2}{-2} y=\frac{-x}{-2}+\frac{4}{-2} \\
& y=\frac{1}{2} x-2 \\
& y=m x+b
\end{aligned}
$$

$$
\begin{array}{ll}
m=y_{2} & -3=\left(\frac{1}{2}\right)(2)+b \\
x=2 & -3=1+b \\
y=-3 & -1=-1 \\
-4=b
\end{array}
$$

* Many possible answers

The graph below shows $\triangle A B C$ and its image, $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$.
A translation 2 units down and a reflection over the y-axis maps $\triangle A B C$ onto $A A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$

Describe a sequence of rigid motions which would map $\triangle A B C$ onto $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$.

A translation 3 units
As graphed on the set of axes below, $\triangle A^{\prime} B^{\prime} C^{\prime}$ is the image of $\triangle A B C$ after a sequence o transformations.
down and a reflection over the y-axis maps $\triangle A B C$ onto $\triangle A^{\prime} B^{\prime} C^{\prime}$
Translations and reflections are rigid motions and rigid motions preserve angle meager and side lengths.

Is $\triangle A^{\prime} B^{\prime} C^{\prime}$ congruent to $\triangle A B C$? Use the properties of rigid motion to explain your answer.

Describe a transformation that mass ABC onto
A translation 6 units left and 3 units down then a dilation canted at Bl with a Scale factor of $\frac{1}{3}$ will map
$\triangle A B C$ onto $A A^{\prime} B^{\prime} C^{\prime}$
Scale factor

In the diagram below, $\triangle A B C$ has coordinates $A(1,1), B(4,1)$, and $C(4,5)$. Graph and label $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$, the image of $\triangle A B C$ after the translation five units to the right and two units up followed by the reflection over the line $y=0$.

Level 2 Review

