8.3 - Proving Parallelograms

Objective: Students will be able to prove what shape a figure is based on it's coordinates

Proving a Quadrilateral Is a Parallelogram

Properties of a Parallelogram

- 1) Opposite Sides are Parallel
- 2) Opposite Sides are Congruent
- 3) Diagonals Bisects Each Other
- 4) Opposite Angles are Congruent
- 5) Consecutive Angles are Supplementary

Quadrilateral PSFT has coordinates at P(-5, 1), S(-2, 2), F(-1, -3), T(-4, -4).

Prove PSFT is a parallelogram.

Step 2: Find slope of each side

Step 3: Write Conclusion

In quadrilateral PSFT, _____ and ____.

Therefore, PSFT is a parallelogram because

Proving a Quadrilateral Is a Rhombus

Special Properties of a Rhombus

- 1) All Sides are Congruent
- 2) Diagonals are Perpendicular
- 3) Diagonals Bisects Vertex Angles

Quadrilateral ROMY has coordinates at R(2, 3), O(5, -4), M(-2, -1), Y(-5, 6). Prove ROMY is a rhombus.

Step 2: Prove the quadrilateral is a parallelogram (refer to last page)

Step 3: Show diagonals are perpendicular

Step 1: Plot Points

In parallelogram ROMY, _____.

Therefore, ROMY is a rhombus because

Independent Practice

1. Show that the quadrilateral M(-4,0), A(-1,3), T(3,1) and H(0,-2) is a parallelogram.

Prove that quadrilateral LEAP with the vertices L(-3,1), E(2,6), A(9,5) and P(4,0) is a parallelogram

Proving a Quadrilateral is a Rhombus

Prove that a quadrilateral with the vertices A(-5,4), B(1,6), C(-1,0) and D(-7,-2) is a rhomb

Graph quadrilateral EFGH with the given vertices E(-6, -3), F(1, 0), G(4, 7), H(-3, 4). Prove the figure is a rhombus.

