Level 1 - Transformations

Rigid Motions

Rigid motions preserve the size of the side lengths and angle measures. For this reason, the image is always congruent to
the pre-image.

A translation along $B E$ maps onto $\boldsymbol{\Delta}$ EF

Dilations

Dilations change the side length but preserves the angle measures. For this reason, the image is always similar to Minimum rotation 360 n

A dilation with a scale factor of 2 maps $\quad C A \not \Delta$ pnto

Level 2 - Congruent Triangles

H

Level 3 - Parallel Lines

Transversal

A regular pentagon is shown in the diagram below. In the diagram below, which single transformation was used to map triangle A onto triangle B ?

If the pentagon is rotated clockwise around its center, the minimum number of degrees it must be rotated to carry the pentagon onto itself is

1) 54°
2) 72°
3) 108°
4) 360°

As shown on the graph below, $\Delta R^{\prime} S^{\prime} T^{\prime}$ is the image of $\triangle R S T$ under a single transformation.

Which transformation does this graph represent?

1) line reflection
e reflection
2) line reflection
3) rotation
4) translation
5) rotation
6) dilation
7) translation

As shown in the diagram below, $A C$ bisects $\angle B A D$ and $\angle B \cong \angle D$.

Which method could be used to prove $\triangle A B C \cong \triangle A D C$?

1) SSS
) AAA
2) SAS
3) AAS

In $\triangle A B C$ shown below with $\overline{A D C}, \overline{A E B}, \overline{C F E}$, and $\overline{B F D}, \triangle A C E \cong \triangle A B D$

Which statement must be true?

1) $\angle A C F \cong \angle B C F$
2) $\angle D A E \cong \angle D F E$
3) $\angle B C D \cong \angle A B D$
4) $\angle A E F \cong \angle A D F$

Given: $\overline{M T}$ and $\overline{H A}$ intersect at $B, \overline{M A} \| \overline{H T}$, and $\overline{M T}$ bisects $\overline{H A}$.

Prove: $\overline{M A} \cong \overline{H T}$

(2) $4 M 8 \angle 5$

In the accompanying figure, what is one pair of alternate interior angles?

1) $\angle 1$ and $\angle 2$
2) $\angle 4$ and $\angle 5$
3) $\angle 4$ and $\angle 6$
4) $\angle 6$ and $\angle 8$

In the accompanying diagram, parallel lines $\overline{A B}$ and Γ Adarnponying Prantans two parallel $\overline{C D}$ are intersected by transversal $\overline{E F}$ at points X and Y, and $\mathrm{m} \angle F Y D=123$. Find $\mathrm{m} \angle A X Y$.

$$
\angle A X Y=57^{\circ}
$$

If $\mathrm{m} \angle 1=110$, what is the measure of $\mathrm{m} \angle 7$?

1) 40°
2) 70°
3) 110°
4) 180°

Level 4 - Similarity

Facts about similar triangles:

1) Corresponding angles are congruent
2) Corresponding sides have the same ratio

Three ways to prove similarity

Facts about dilations

1) After dilation, image is parallel to the pre image (will have same slope)
2) Angle measures stay the same after dilation
3) Dilations produce similar figures

Distance from image to center of dilation
4) Scale factor:

Distance from pre-image to center of dilation

Level 5 - Parallelograms

Properties of Parallelograms

1) Opposite sides are congruent
2) Opposite sides are parallel
3) Opposite angles are congruent
4) Adjacent angles are supplementary
5) Diagonals bisect each other

Special Properties of a Rectangle

1) All angles are 90
2) Diagonals are congruent

Special Properties of a Rhombus

1) Diagonals bisect vertex angles
2) Diagonals are perpendicular
3) All sides are congruent

Which is not a property of all similar triangles?

1) The corresponding angles are congruent.
2) The corresponding sides are congruent.
3) The perimeters are in the same ratio as the corresponding sides.
4) The altitudes are in the same ratio as the corresponding sides.

4 In the diagram below, $\triangle A B C \sim \triangle A D E$.

Which measurements are justified by this similarity?

1) $A D=3, A B=6, A E=4$, and $A C=12$
2) $A D=5, A B=8, A E=7$, and $A C=10$
3) $A D=3, A B=9, A E=5$, and $A C=10$
4) $A D=2, A B=6, A E=5$, and $A C=15$

In $\triangle S C U$ shown below, points T and O are on $\overline{S U}$ and $\overline{C U}$, respectively. Segment $O T$ is drawn so that $\angle C \cong \angle O T U$.

If $T U=4, O U=5$, and $O C=7$, what is the length of $\overline{S T}$?

1) 5.6
2) 8.75
3) 11
4) 15

A parallelogram must be a rectangle when its

1) diagonals are perpendicular
2) diagonals are congruent
3) opposite sides are parallel
4) opposite sides are congruent

If $A B C D$ is a parallelogram, which statement would prove that $A B C D$ is a rhombus?

1) $\angle A B C \cong \angle C D A$
2) $\overline{A C} \cong \overline{B D}$
3) $\overline{A C} \perp \overline{B D}$
4) $\overline{A B} \perp \overline{C D}$

In the diagram below, MATH is a rhombus with diagonals $\overline{A H}$ and $\overline{M T}$.

If $\mathrm{m} \angle H A M=12$, what is $\mathrm{m} \angle A M T$?

1) $12 \quad 2) 78 \quad 3) 84$ 4) 156

In scalene triangle $A B C$ shown in the diagram below, $\mathrm{m} \angle C=90^{\circ}$.

Which equation is always true?
(1) $\sin A=\sin B$
(3) $\cos A=\sin C$
(2) $\cos A=\cos B$
(4) $\sin A=\cos B$

As shown in the diagram below, the angle of elevation from a point on the ground to the top of the tree is 34°.

If the point is 20 feet from the base of the tree, what is the height of the tree, to the nearest tenth of a foot?
(1) 29.7
(3) 13.5
(2) 16.6
(4) 11.2

Level 7 and 8 - Coordinate Geometry

Parallel Slopes

Are always the same

$$
m_{1}=3 \quad m_{2}=3
$$

Perpendicular Slopes
Are always negative reciprocals

$$
m_{1}=3 \quad m_{2}=-\frac{1}{3}
$$

Level 9 - Circles

If a triangle is inscribed in a circle and the
Inscribed Angle Theorem
2 (inscribed angle) = intercepted arc

Partitioning Line Segments
If the center of dilation is on the line - the equation of the line doesn't change!

If the center of dilation is on the origin, just multiply the y intercept by the scale factor. Slope stays the same!

$$
\begin{aligned}
& x_{1}+\frac{r_{1}}{r_{1}+r_{2}}\left(x_{2}-x_{1}\right) \\
& y_{1}+\frac{r_{1}}{r_{1}+r_{2}}\left(y_{2}-y_{1}\right)
\end{aligned}
$$

Area of a sector
Area $=\frac{\theta}{360} \times \pi r^{2}$

Length of a sector

If a quadrilateral is inscribed in a circle, then the opposite angles always add up to

Circle	$A=\pi r^{2}$
Circle	$C=\pi d$ or $C=2 \pi r$
General Prisms	$V=B h$
Cylinder	$V=\pi r^{2} h$
Sphere	$V=\frac{4}{3} \pi r^{3}$
Cone	$V=\frac{1}{3} \pi r^{2} h$
Pyramid	$V=\frac{1}{3} B h$

Level 10 - Volume

Formula To Find Weight

Population Density
Density $=\frac{\text { Population }}{\text { Area }}$

Formula To Find Cost

$$
\begin{aligned}
C & =W \times U \\
W & =\text { Weight } \\
U & =\text { Unit Price }
\end{aligned}
$$

Rotating Figures
Rotate Triangle - Cone
Rotate Rectangle - Cylinder
Rotate Circle - Sphere

What are the coordinates of the point on the directed line segment from $K(-5,-4)$ to $L(5,1)$ that partitions the segment into a ratio of 3 to 2 ?

1) $(-3,-3)$
2) $(-1,-2)$
3) $\left(0,-\frac{3}{2}\right)$
4) $(1,-1)$

The equation of line h is $2 x+y=1$. Line m is the image of line h after a dilation of scale factor 4 with respect to the origin. What is the equation of the line m ?

1) $y=-2 x+1$
2) $y=-2 x+4$
3) $y=2 x+4$
4) $y=2 x+1$

Which equation represents the line that is perpendicular to $2 y=x+2$ and passes through the point $(4,3)$?

1) $y=\frac{1}{2} x-5$
2) $y=\frac{1}{2} x+1$
3) $y=-2 x+11$
4) $y=-2 x-5$

The equation of a circle is $x^{2}+y^{2}+6 y=7$. What are the coordinates of the center and the length of the radius of the circle?
(1) center $(0,3)$ and radius 4
(2) center $(0,-3)$ and radius 4
(3) center $(0,3)$ and radius 16
(4) center $(0,-3)$ and radius 16

As shown in the diagram below, quadrilateral $D E F G$ is inscribed in a circle and $\mathrm{m} \angle D=86$.

Determine and state $\widehat{m F E}$. Determine and state $\mathrm{m} \angle F$.

In the diagram below of circle O, chords $\overline{A D}$ and $\overline{B C}$ intersect at $E, \mathrm{~m} \overparen{A C}=87$, and $\mathrm{m} \overparen{B D}=35$.

What is the degree measure of $\angle C E A$?

1) 87
2) 61
3) 43.5
4) 26

A shipping container is in the shape of a right rectangular prism with a length of 12 feet, a width of 8.5 feet, and a height of 4 feet. The container is completely filled with contents that weigh, on average, 0.25 pound per cubic foot. What is the weight, in pounds, of the contents in the container?
(1) 1,632
(3) 102
(2) 408
(4) 92

