Level 8 Study Guide

Time to put those thinking caps on!

Given: $A(-2,2), B(6,5), C(4,0), D(-4,-3)$
Prove: $A B C D$ is a parallelogram but not a rectangle. [The use of the grid is optional.]
(1) Prove opp. Sides 11 $\left.\left.\begin{array}{ll}m_{A d}=\frac{5}{2} \\ m_{B C}=\frac{5}{2}\end{array}\right] 11 \quad m_{A B}=\frac{3}{8} \quad m_{D C}=\frac{3}{8}\right] \quad 11$

$$
d=\sqrt{\left(x_{1}-x_{2}\right)^{2}+\left(y_{1}-y_{2}\right)^{2}}
$$

$\overline{A C}=\sqrt{40} \quad \overline{D B}=\sqrt{164}$

(3) $A B C D$ is a b / c spp sides 11 and
not a rectangle bic diagonals are not \simeq^{-}
Ashanti is surveying for a new parking lot shaped like a parallelogram. She knows that three of the vertices of parallelogram $A B C D$ are $A(0,0), B(5,2)$, and $C(6,5)$. Find the coordinates of point D and sketch parallelogram $A B C D$ on the accompanying set of axes. Justify mathematically that the figure you have drawn is a parallelogram.

$$
\begin{array}{ll}
m_{A B}=\frac{2}{5} & m_{A D}=3 \\
m_{P C}=\frac{2}{5} & m_{B C}=3 \\
A B C D \text { is } & a \quad \square \quad b / c \\
\text { OPP sides } 11 .
\end{array}
$$

Quadrilateral MATH has coordinates $M(1,1)$, $A(-2,5), T(3,5)$, and $H(6,1)$. Prove that quadrilateral MATH is a rhombus and prove that it is not a square. [The use of the grid is optional.]

$$
\begin{aligned}
& \text { (1) Prove Opp. Sides ore } 11 \text { (slope) } \\
& m_{A B}=-4 / 3 m_{A T}=0 \\
& \left.m_{T H}=-4 / 3\right]^{\prime \prime} m_{M H}=0
\end{aligned}
$$

(2) Prove Diagonals 1 (slope)

$$
m_{A H}=-1 / 2 \quad m_{M T}=2
$$

(3) Drove Diagoin's an \cong (distance)

$$
A H=\sqrt{80} M J=\sqrt{20}
$$

(4) $A B C D$ is a rhombus bic opp. sides 11 and diagonals ore Ley It is nat a square b/c
 ding-anels are Not \cong

What are the coordinates of the point on the directed line segment from $K(-5,-4)$ to $L(5,1)$ that partitions the segment into a ratio of 3 to 2 ?
(1) $(-3,-3)$

$$
3+2=5
$$

(2) $(-1,-2)$
(3) $\left(0,-\frac{3}{2}\right)$
(4) $(1,-1)$

In the coordinate plane, the vertices of $\Delta A B C$ are $(\lambda, 5), B(-2,3)$ and $C(-4,7)$. Find the value of x that makes $\triangle A B C$ a right triangle. Justify your answer.
(1) Plot points /D mom Line
(2) Find slope of given line

$$
m_{C B}=-2
$$

(3) $m_{A B}=1 / 2$
(4) Draw now point!

Which equation represents the perpendicular bisector of $\overline{A B}$ whose endpoints are $A(8,2)$ and $B(0,6)$?
(1) Find Midpoint $\rightarrow(4,4)$
(2) Find Slope of Given Line

$$
m_{\triangle B}=-1 / 2
$$

(3) $y=m x+b$

$$
m=2 \quad 4=(2)(4)+b
$$

$$
\rightarrow-4=8=8+b-
$$

$$
y=A \quad \frac{-8-8}{-4=6}
$$

In the coordinate plane, the points $(2,2)$ and $(2,12)$ are the endpoints of a diameter of a circle. What is the length of the radius of the circle?

$$
\begin{aligned}
& d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
& d=\sqrt{(2-2)^{2}+(12-2)^{2}} \\
& d=\sqrt{0+10^{2}} \\
& d=\sqrt{100} \quad \\
& d=10 \quad
\end{aligned}
$$

The vertices of square RSTV have coordinates $R(-1,5), S(-3,1), T(-7,3)$, and $V(-5,7)$. What is the perimeter of RSTV?

1) $\sqrt{20}$
2) $\sqrt{40}$
3) $4 \sqrt{20}$
4) $4 \sqrt{40}$

$$
\begin{aligned}
& d=\sqrt{2^{2}+4^{2}} \\
& d=\sqrt{20} \\
& P_{\text {erimeter }}=4 \times \sqrt{20}
\end{aligned}
$$

Given: $J(-4,1), E(-2,-3), N(2,-1)$
Prove: $\triangle J E N$ is an isosceles right triangle. [The use of the grid is optional.]
(1) Prove 2 sides I

$$
M_{J E}=-2 \quad M_{E N}=\frac{1}{2}
$$

(2) Find length of $z \cong$

$$
J E=\sqrt{20} \quad E N=\sqrt{20}
$$

JELEN and an sos. bIC JE $\cong E N$

