Rigid Motions

Rigid motions preserve the size of the side lengths and angle measures. For this reason, the image is always congruent to the pre-image.

A translation along BE maps $\boldsymbol{\triangle} A B C$ onto $\boldsymbol{\Delta} D E F$

Dilation

Dilation change the side length but preserves the angle measures. For this reason, the image is always similar to the pre-image

A dilation with a scale factor of 2 maps $\boldsymbol{\Delta}$ CAT onto $\boldsymbol{\Delta}$ DOG

Scale Factor
$\mathrm{k}=\frac{\text { Image }}{\text { Pre-Image }}$

1) Quadrilateral $A B C D$ undergoes a transformation, producing quadrilateral $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. For which transformation would the area of $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ not be equal to the area of $A B C D$?
(1) a rotation of 90° about the origin
(2) a reflection over the y-axis
(a) a dilation by a scale factor of 2
(4) a translation defined by $(x, y) \rightarrow(x+4, y-1)$
2)

Which of the following descriptions (pertaining to the graph at the right) is true?

1) $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ is a translation of $\triangle A B C$.
$\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ is a translation of $\triangle A^{\prime} B^{\prime} C^{\prime}$
2) $\Delta A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ is a dilation in the origin of scale factor 2 of $\triangle A B C$.
3) $\triangle A^{\prime} B^{\prime} C^{\prime}$ is a translation of $\triangle A B C$.
4) In the diagram below, $\triangle A B C \cong \triangle A^{\prime \prime} B^{\prime} C^{*}$.

Which sequence of transformations maps $\triangle A B C$ onto $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$?
(1) a line reflection followed by a rotation
(2) a rotation followed by a line reflection
(3) a translation followed by a line reflection a rotation followed by a translation

Rigid Motion and Congruence Practice

Name \qquad
Directions: Read carefully and examine the diagrams. Remember that rigid motions include reflections, translations, rotations or combinations of these transformations.

1. Which rigid motions) will verify that $\triangle A B C$ is congruent to $\triangle D E F$ as shown below?

A translation along $\overline{A D}$ then a reflection over $\overline{D F}$ 3. Which rigid motions) will verify that $\triangle A B C$ is congruent to $\triangle D E F$ as shown below?

A translation 2 units up and thun a reflection over $x=-1$
2. Which rigid motion will verify that $\triangle A B C$ is congruent to $\triangle D E F$ as shown below?

A reflection over the x-axis
4. Given a straight segment from A, through T, to O. Which rigid motions) will verify that $\triangle C A T$ is congruent to $\triangle B O T$ as

A translation along $\overline{B C}$
then a reflection aver
$O B$

In the diagram below, $\triangle A B C$ and $\triangle X Y Z$ are graphed.

A rotation of 180° cc. around the origin maps $\triangle A B C$ onto $\triangle X Y Z$.

A rotation is a yid motion and rigid motions Preserve side lengths and Use the properties of rigid motions to explain why $\triangle A B C \cong \triangle X Y Z$. angle measore

Quadrilaterals $A B C D$ and $A^{\prime} B^{\prime} C^{\prime \prime} D^{\prime}$ are graphed on the set of axes below.

A reflection oven the line $y=-1$ and then a reflection over the y-axis maps ABCD onto $A^{\prime \prime} B^{\prime \prime} C^{" D "}$

Describe a sequence of transformations that maps trapezoid $A B C D$ onto trapezoid $A^{\prime \prime} B^{\prime \prime} C^{\prime \prime} D^{\prime}$.

Triangle $A B C$ and triangle $A D E$ are graphed on the set of axes below.

A dilation with a scale factor of 3 centered at point A maps $A B C$ onto $A D$

Describe a transformation that maps triangle $A B C$ onto triangle $A D E$.

Triangle $A B C$ is graphed on the set of axes below. Graph and label $\triangle A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after a reflection over the line $x=1$.

8 Triangle $A B C$ and point $D(1,2)$ are graphed on the set of axes below.

Graph and label $\triangle A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after a dilation of scale factor 2 centered at
point D.

Given: $\triangle A B C$ with coordinates $A(1,2), B(0,5)$, and $C(5,4)$.
a On the graph below, draw and label $\triangle A B C$.
b Graph and state the coordinates of $\triangle A^{\prime} B^{\prime} C^{\prime}$, the image of $\triangle A B C$ after the translation $T_{-6,3}$.
c Graph and state the coordinates of $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$, the image of $\triangle A^{\prime} B^{\prime} C^{\prime}$ after a reflection in the x-axis.
d Graph and state the coordinates of $\Delta A^{\prime \prime \prime} B^{\prime \prime \prime} C^{\prime \prime \prime}$, the image of $\triangle A^{\prime \prime} B^{\prime \prime} C^{\prime \prime}$ after a rotation of 90° counter clockwise around the origin

